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Abstract
Organizations are made up of teams, and team formation is a crucial attribution for
decision-makers. Several studies indicate the increased correlation between team arrange-
ment and performance. Moreover, some social aspects of team members’ interaction,
such as cohesion and disagreement have a strong relationship with team performance
and innovative practices. To measure and then optimize those attributes, our work has
employed sociometric evaluation to measure cohesion, and proposes to compute intra-group
disagreement by means of Krippendorff’s alpha, a metric that generalizes disagreement
evaluations. A multi-objective Genetic Algorithm was applied to perform optimization,
maximizing objectives of cohesion and disagreement and generating an approximate Pareto
Front of the solutions. The NSGA-II algorithm, a standard algorithm for multi-objective
optimization was employed and the method was applied to a benchmark dataset, consisting
of 7 team formation problems with the same structure but different numbers of individuals
and groups. The algorithm was capable of generating sufficient good Pareto approximations
and demonstrated to be a suitable approach for this problem.



Resumo
As organizações são formadas por equipes, e a formação de equipes é uma atribuição crucial
para os tomadores de decisão. Vários estudos indicam a correlação entre a disposição
das equipes e desempenho. Alguns aspectos sociais relativos à interação dos membros
das equipes, tais como a coesão e discordância, têm demonstrado uma forte relação com
desempenho e práticas inovativas. Este trabalho aplicou um Algoritmo Genético Multi-
Objetivo para resolver o problema de formação de times, maximizando objetivos de coesão
e discordância e gerando uma fronteira aproximada de Pareto das soluções. Além disso,
uma maneira quantitativa de computar a discordância utilizando o alpha de Krippendorff,
um padrão na medição de confiabilidade, foi proposta O algoritmo NSGA-II, um algoritmo
para otimização multiobjetivo foi empregado, e o método foi aplicado para um conjunto
de dados de referência, constituído por 7 problemas de formação de times, com a mesma
estrutura mas um número diferente de indivíduos e grupos. O algoritmo foi capaz de gerar
aproximações de Pareto suficientes boas, obtendo resultados satisfatórios para o problema.
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1 Introduction

1.1 Team Performance
Groups and Teams are the backbones of organizations. Due to the systems effect,

the performance of one team is affected at least by one other team, and each group affects
the organization’s performance (LUSSIER, 2017). Therefore, an organization is made up
of many sub-systems, enhanced by collective intelligence, to generate positive outcomes,
and make smarter decisions with collaboration among the members. So, group formation
is an important step to achieve success and assure an effective working of these systems.

An essential capability for creating efficient teams is Cohesion between the group
members. Cohesion refers to the commitment of team members to their work team and
their desire to maintain group membership (LOTT; LOTT, 1965).

Meta-analysis reveals a strong correlation between cohesion and performance
(EVANS; DION, 1991). Sanders e Nauta (2004) pointed out how increased cohesion
reduces employee absenteeism while increasing job satisfaction and motivation. Moreover,
cohesion can also lead to Innovative teams, as concluded by Hülsheger, Anderson e Salgado
(2009) in a study containing three decades of research.

But, despite the potential of cohesive teams to generate positive outcomes, it has
also disadvantages regarding information sharing. Mesmer-Magnus e DeChurch (2009)
discovered that cohesive teams tends to share openness information instead uniqueness
information. Uniqueness information refers to the number of group members with knowledge
about a piece of information. Openness information regards to aspects of communications
related to work, goals, and reports of a task.

Some studies indicate a correlation between diversity and performance. A technical
report by Hunt, Layton e Prince (2015), has shown diverse teams lead to better financial
performance. However, recent analysis has explored this relationship, comparing surface-
level diversity and deep-level diversity.

Surface-level diversity refers to easily discernible demographic characteristics that
clearly distinguish social group membership. Deep-level diversity involves disparities
in attitudes, beliefs, and values among members. These components’ information is
transmitted through verbal and nonverbal behavior patterns, and it can only be discovered
through considerable, individual contact and information collecting (HARRISON; PRICE;
BELL, 1998).

The exact type of diversity that increases a team’s performance is deep-level
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diversity, where perspectives and information differ. While surface-level demographic
features doesn’t increase team performance (WANG et al., 2019).

Both surface and deep-level diversity in culturally diverse teams incurs higher social
costs. However, in surface-level it becomes higher than informational benefits (BUSSE;
MAHLENDORF; BODE, 2016). While for deep-level, informational benefits for team
performance are relatively higher than the social costs (WANG et al., 2019).

Veen, Kudesia e Heinimann (2020) have studied how information sharing strategies
influence the accuracy and speed of decision making, comparing strategies of advocacy,
agreement, random, and disagreement. In terms of accuracy, both random and disagreement,
have outperformed among other strategies, and random strategy has presented a slightly
superior value. But, regarding decision speed, the disagreement strategy was quite better,
in comparison to the random strategy, demonstrating that it is the most indicated strategy
for effective collaborative decisions. So, they conclude that deep-level diversity is important,
however, combined with a bad information sharing strategy, it can not produce the desired
outcomes.

1.2 Optimization of Team Formation
Metaheuristics are considered the most effective methods to solve human resource

allocation problem (HRAP), providing good solutions, at a reasonable computational time.
The table 1 provides information regarding HRAP solving techniques, in terms of numbers
of publications (BOUAJAJA; DRIDI, 2017).

Method Exact Heuristics Metaheurístics Hybrid
Number of publications 20 34 41 12

Percentage (%) 19 32 38 11

Table 1 – HRAP solving techniques

Genetic algorithm (GA), tabu search (TS), ant colony optimization (ACO), particle
swarm optimization (PSO) and simulated annealing (SA) are widely used algorithms
in HRAP, and table 2 indicates that GA was the most used algorithm to solve the
combinatorial optimation problem (BOUAJAJA; DRIDI, 2017).

Metaheuristic ACO TS GA SA PSO HA
Number of publications 8 9 16 3 5 12

Percentage (%) 15 17 30 6 9 23

Table 2 – Most used algorithms in HRAP
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A comprehensive review indicates that NSGA-II (Non-Dominated Genetic Algorithm-
II) is the most used algorithm to the multi-objective combinatorial optimization problems
being a off-the-shelf method for Allocation problems (VERMA; PANT; SNASEL, 2021).

1.3 Related Works
Assembling teams is a challenge for decision makers, and with the revealing of

factors that drive teams to better performance, some computational methods could be
useful tools to help managers to choose and allocate people to form teams, in order
to achieve those desired metrics. Ballesteros-Perez, González-Cruz e Fernández-Diego
(2012) has developed an approach to measure the cohesion among group members with
sociometric techniques, resulting in the multiple team formation problem. Manual and
computational exhaustive methods were suggested to find the allocation that maximizes
cohesion. Indicating that the method is not feasible to apply in case of large allocations.

Esgario, Silva e Krohling (2019) extended the work proposed by Ballesteros-Perez,
González-Cruz e Fernández-Diego (2012) by optimizing the group formation in terms
of cohesion using a Genetic Algorithm (GA). In addition, they proposed a benchmark
dataset, with seven instances of the problem, in which GA was compared to exhaustive
method. The study revealed that evolutionary approach is effective when it is not feasible
to compute the optimal solution in an acceptable computational time due the required
effort. So, the approach turns out to be quite promising, since the NP-hard nature of the
problem.

1.4 Objectives
The objective of this work is to solve the Team Formation Problem for the Bench-

mark proposed by Esgario, Silva e Krohling (2019), considering objectives of intra-group
Cohesion and Disagreement. Firstly, a definition of Disagreement measure must be defined,
and data for measure the indicator should be generated. Hence, to perform the optimization
analysis the following steps should be taken. First, a single-objective optimization for each
criteria will be carried out. Second, to handle 2 objectives simultaneously, a multi-objective
Optimization will be performed in order to find a Pareto set for the problem, which means
the set of solutions (Allocations) that maximizes the values for both objectives.

• Specific Objectives:

– Perform Optimization with single-objective Genetic Algorithm for Cohesion
and compare to Benchmark proposed in literature.
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– To attempt measuring Disagreement and randomly simulate data to compute
the metric.

– Optimize the allocation for Disagreement in the proposed Benchmark, adding
the simulated data.

– Perform a Multi-objective Optimization considering both criteria at the same
time.

1.5 Organization of the work
The work has been divided into chapters of Problem Definition Methodology,

Experimental Results and Conclusion. The Problem Definition describes the approach
used for the human resource allocation problem. In the methodology, a brief intuition about
the Genetic Algorithm is provided, explaining it in terms of its operators, and applying
it in a simple example. Next, important concepts for understanding the multi-objective
approach are described and then the NSGA-II algorithm is explained.

In the experimental results chapter, an example of application of the methodology
is detailed in the first problem of the benchmark dataset. Then, the benchmark dataset is
presented in terms of the number of individuals and groups, and the parameters of the
algorithms for each case. Then the results are presented.

At the end, a conclusion on the development of the work is presented, also indicating
possible directions for future research.
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2 Problem Formulation

2.1 Problem Definition
The problem of allocation is defined as an optimization problem, with two objectives,

cohesion and disagreement, and two constraints, one to ensure that each individual belongs
to only one group, and the second is regarding group requirements. In this section, we
describe how to compute each objective and also the constraints.

Based on Ballesteros-Perez, González-Cruz e Fernández-Diego (2012), some defi-
nitions are provided. Next, the total number of individuals that should be allocated is
expressed by ni and the number of groups as nk.The matrix A represents the indication
of which individual belongs to each group, and it is used to compute the cohesion and
disagreement for a solution. An element aij from matrix A indicates that individual i

belongs to group j.

A =

G1 . . . Gnk


I1 a11 . . . a1k

... ... . . . ...
Ini

ani1 . . . anik

In this approach, each worker is allocated full-time in a group, which means that
the sum of each row must be one.

k∑
j=1

aij = 1 ∀i ∈ 1, 2, ..., ni (2.1)

The individuals are allocated constrained by a requirement matrix. The individuals
have different skills, and they are divided into Departments. Each group requires a specific
number of resources from a given Department, and this Requirement is described by a
matrix R.

R =

G1 . . . Gnk


D1 y11 . . . y1k

... ... . . . ...
Dj yj1 . . . yjk

where Di and Gj represent the department i and group j, respectively, and element yij

indicates the demand from group j for workers of department i.
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2.2 Cohesion Measure
There are many forms of compute cohesion. Although, a simple and effective way

to measure the indicator is using a Sociometric Test. To compute intra-group cohesion, a
Sociometric Matrix, of dimensions ni x ni, must be defined, whereas each individual Ii

assigns a value s to each member that can be a possible teammate. In this approach, a
discrete definition of s values was employed, and it can be: -1, 0, or 1. Depending on the
answers given to sociometric test questions.

S =

I1 . . . Ini


I1 s11 . . . s1ni

... ... . . . ...
Ini sni1 . . . snini

To calculate the general cohesion, Eg, of a possible solution, the following equation
was used.

Ek =
∑ni

j=1 aikaijsij

nik

(2.2)

where Ek represents the cohesion for the Ekth group. The cohesion must be multiplied by
a weight to deal with values in the same scale.

Eg =
nk∑

k=1
WkEk (2.3)

where Wk is the weight of each group, calculated according to

Wk = nik

ni

(2.4)

where nik is the number of individuals of a group k, and ni is the total numbers of
individuals of the problem.

2.3 Disagreement Measure
This work proposes to compute intra-group disagreement by means of Krippen-

dorff’s Alpha (α) metric (KRIPPENDORFF, 2011), because of its versatility, due to
the possibility of using many types of evaluation, nominal, ordinal, cardinal, and so on.
Moreover, it presents no limitations regarding missing data and number of evaluations
or evaluators. The input for the disagreement calculation is a Reliability Matrix, formed
by the evaluations made from each individual. In the Reliability Matrix C, each row
represents one individual and each column an evaluation.



Chapter 2. Problem Formulation 15

C =

Ev1 . . . Evn


I1 r11 . . . r1n

... ... . . . ...
Ini

rni1 . . . rnin

With this matrix in hand, a coincidence matrix is obtained, tabulating coincidence
of evaluations in C. A binary example illustrates the calculation.

Ce =

Av1 Av2 Av3 Av4( )
J1 0 0 1 0
J2 0 1 0 0

Where, Ce is an example of a Reliability matrix.

The coincidence matrix M in binary evaluations is described by:

M =

0 1( )
0 o00 o01

1 o10 o11

The coincidences are tabulated twice, one for each row evaluation. The coincidence
matrix of Ce is described by:

Me =

0 1( )
0 4 2
1 2 0

Then, Disagreement is calculated by:

α = 1 − Do

De

(2.5)

where, Do is the Observed Disagreement and De is the Expected Disagreement.

For the example of Ce, the calculation procedure is:

α = 1 − (n − 1) o01

n0 ∗ n1
(2.6)

where,

• n0 is the sum of 0 column in coincidence matrix

• n1 is the sum of 1 column in coincidence matrix

• n is the sum of n0 and n1
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So,

α = 1 − (8 − 1) 2
6 ∗ 2 = −0.16 (2.7)

The lower the value the higher is the disagreement. Krippendorff (2011) indicates that
1 means perfect agreement among members, and values below of 0 indicates systematic
disagreement. Since we are aiming to find the highest possible Disagreement, most of
values found were below of zero.
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3 Methodology

3.1 Genetic Algorithm
Genetic Algorithm (GA) (HOLLAND et al., 1975) is a nature-inspired algorithm

based on Charles Darwin’s evolution theory. It is one of the most used optimization
algorithms, due to its effectiveness to deal with NP-hard problems. To perform optimization,
GA works only with information of the fitness of an individual. It does not need information
of the first and of the second derivatives. Therefore, it is an alternative to deal with non-
continuous functions, in which it’s not possible to calculate derivatives.

Although it is not possible to ensure that GA converges to an optimal solution,
due to its stochastic nature, the algorithm presents fast convergence and is a promising
algorithm for non-linear optimization problems achieving good results within acceptable
computational time.

GA main procedure is illustrated in the figure 1. It consists in combining operators
for exploration and exploitation of the search space, by Selection, Crossover and Mutation

Figure 1 – GA Workflow

To illustrate the approach, Problem 1, a simple maximization problem will be
solved with GA (LACERDA; CARVALHO, 1999).
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Problem 1:
maximize

x
f(x) = x2

subject to 0 ≤ x ≤ 31,

x∈ Z

(3.1)

3.1.1 Individual

An individual in GA is a possible solution. A genetic representation of this solution
is called chromosome. Each gene of the chromosome stores the information about a variable
of the optimization problem. Originally, GA was designed to deal with binary encoded
chromosomes, however, it has been developed operators that handle Integer, Real and many
types of encoding, expanding the possibilities of applications for GA. The set comprising
all the individual is called population. Figure 2 shows an example population for a two
variable problem.

Figure 2 – GA Population

3.1.2 Fitness Evaluation

The second step is to evaluate each chromosome using the objective function, with
the result of this evaluation the fitness can be computed (typically the function is the
objective function) and each chromosome storage a fitness value. In this case, the fitness
of the function is just the value of the function in the given point.
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3.1.3 Generation of the initial population

In order to run a GA, it is necessary first to initialize the population of possible
solutions. The most common strategy is generating random possible solutions. Population
Size is the number of individuals in the population. Illustrating with the Problem 1. The
first generation was generated with the following attributes

• 5 bits binary encoding; 01101 = 13

• Population size = 4

• Fitness is the objective function

Choromosome x f(x)
A1 = 11001 25 625
A2 = 01111 15 225
A3 = 01110 14 196
A4 = 01010 10 100

3.1.4 Selection

Inspired by natural selection, and Charles Darwin’s premise of "Survival of the
fittest", selection operator focus on choosing the best individual of the population. The
fittest individuals are selected to generate new individuals using Crossover and Mutation
operators.The main types of Selection are Roulette and Tournament. In Roulette, indivi-
duals with highest fitness have higher chance to be selected. Tournament selection splits
the Population into groups of n individuals, and then, the best individual of the group
survives. The size of n is called the selection pressure, and values are typically equal to 2.
The Tournament operator is applied to the Population generated for Problem 1:

Individuals Fitness Tournaments Selected
A1 625 A1 vs A4 A1
A2 225 A2 vs A3 A2
A3 196 A3 vs A3 A3
A4 100 A4 vs A2 A2

3.1.5 Crossover and Mutation

Crossover and mutation are operators for Exploring the search space, which means
finding regions still not explored in the feasible space. To perform the diversification,
crossover operator is used to combine a percentage of the selected individuals to produce
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an offspring to fill the next population. The percentage is an user-defined parameter,
named crossover rate, and values are normally between 0.6 to 0.8. Individuals are randomly
selected to be combined with a probability of crossover rate.

The figure 3 illustrates the binary Crossover

Figure 3 – Crossover Operators

After Crossover, Mutation is the next operator. Mutation adds a random noise to
offspring chromosomes. It also occurs under a given probability, called Mutation rate, and
typical values are in the range of 1-2%. The operator is a strategy to escape from local
minima. Binary forms are shown in figure 4.

Figure 4 – Mutation Operators

For the Problem 1, the one-point crossover and bit-flip mutation were applied, and
the working principle are illustrated in figure 5.
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Figure 5 – Crossover and Mutation operators in Problem 1

The loop persists until a stop criterium is met. For the Problem 1, five generations
were produced, generating the following Populations. The algorithm has found the optimal
in the 4th Generation. The generated populations are presented in table 3.

x f(x)
11011 27 729
11001 25 625

Generation 1 01110 25 625
01010 23 529

x f(x)
11011 27 729
11000 24 576

Generation 2 10111 23 529
10101 21 441

x f(x)
11011 27 729
11000 23 529

Generation 3 10111 15 225
10101 7 49

x f(x)
11111 31 961
11000 27 729

Generation 4 10111 23 529
10101 23 529

x f(x)
11011 31 961
11000 31 961

Generation 5 10111 31 961
10101 23 529

Table 3 – GA generations
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3.1.6 Considerations about Genetic Algorithms

GA originally has been developed to deal with single-objective problems with no
constraints. Approaches to constraint-handling have been proposed in two main directions.
Add a penalty function to the fitness of individuals, where the penalty increases with
the degree of violation of the constraint. And when comparing feasible and unfeasible
individuals in selection, the feasible always wins, and this will be the principle used in in
this work.

Regarding the number of objectives, multi-objective Genetic Algorithms (MOGA)
approaches have been developed to handle many objectives. A hybrid technique, combining
multi-criteria decision making and GA, have been tested in the work, but indeed, a
state-of-the-art algorithm, NSGA-II (DEB, 2002b) outperformed it, in every tested case.
Therefore, NSGA-II will be employed and explained in the following section.

3.2 Multi-Objective Optimization
Deb (2011) defined some important concepts for defining a multi-objective optimi-

zation problem, and this section highlights those definitions.

A multi-objective optimization problem comprises minimization or maximization of
two or more of objective functions. Optimization may be performed either to maximize or
minimize functions. The multi-objective optimization problem, like any other optimization
problem, may include a number of constraints that any feasible solution must meet. The
solutions satisfying the constraints and variable bounds constitute a feasible decision
variable space (DEB, 2014).

3.2.1 Dominance

The main difference between single and multi-objective problem is that objective
functions for more than one objective constitute a multi-dimensional space. The optimal
solutions, in this case, are defined guided by the concept of Dominance (DEB, 2014).

A solution x(1) dominates other solution x(2) if and only if:

• A solution x(1) is no worse than x(2) in all objectives

• x(1) is better than x(2) in at least one objective,

The notation to indicate the dominance is: x(1) ⪰x(2)
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3.2.2 Non-Dominated Set

Since the objective space is multi-dimensional, the approach to find optimal solutions
does not rely on finding a single point, but a set of non-dominated points. Figure 6 shows
a non-dominated front.

Figure 6 – Non-Dominated front (DEB, 2014)

A property of this set of points is that is not possible to improve one objective
without worsening another one. Because of this trade-off, finding a diverse set of points is
crucial to make an accurate final decision (DEB, 2014).
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3.2.3 Pareto Front

Pareto globally optimal solutions are all non-dominated solutions within the search
space. A solution is the Pareto optimal set if there is no feasible vector that dominates
any solution of the set (COELLO et al., 2007). Figure 7 shows Pareto fronts in different
optimization directions.

Figure 7 – Pareto Front examples in different types of problems (DEB, 2014)

Finding the true Pareto Front of a problem is usually quite difficult. Therefore,
reasonably good approximations of are generally acceptable within limited computational
time (COELLO et al., 2007).

3.2.4 NSGA-II

The evolutionary algorithm NSGA-II (DEB, 2002a) is the most used algorithm for
multi-objective (VERMA; PANT; SNASEL, 2021). Based on an elitism mechanism, the
genetic inspired algorithm main loop can be divided in three stages.

• Combination

• Non-dominated sorting

• Compute crowding distance
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Figure 8 – NSGA-II main loop (DEB, 2002a)

Figure 8 illustrates NSGA-II procedure, and given an initial Population Pt, the first
step is to perform crossover and mutation to generate the offspring Qt. Combined, these
two populations form Rt. The second step is to split Rt into frontiers by non-dominated
sorting, in which, the first front F1 is composed by the non-dominated solutions. To find
the second, the elements of F1 are not considered, and again, the non-dominated solutions
must be selected to F2, and so on, until fit the maximum possible solutions in a front.
Figure 9 shows the solutions divided into frontiers.

Figure 9 – Set of solutions and corresponding fronts (DEB, 2014)

Since the overall population size of Rt is bigger than the expected population size,
some front could not accommodate in Pt+1. All fronts which could not be accommodated
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are simply deleted. When the last allowed front is being considered, there may exist more
solutions in the last front than the remaining slots in Pt+1.

To select which solutions will survive, a crowding distance operator must be applied.
The selection aims to preserve the diversity of the population by measuring the density of
solutions surrounding a particular solution.

Let us consider the front F formed by the points 0, i-1, i, i+1, 1, in figure 10.

Figure 10 – Front F (DEB, 2014)

The crowding distance for point 0 and point 1, the extreme values of the front,
tends to infinite. For each objective, a distance between a point and the extreme values
must be computed. The sum of distances for each objective is the crowding distance. The
pseudo code in Algorithm 1 describes the procedure to calculate the crowding distance for
each solution.

Algorithm 1 Crowding Distance Calculation
1: r = F
2: for each i in r set Di = 0
3: for each objective m do
4: F = sort(F , m)
5: d0 = d1 = ∞
6: for i = 2 to (r-1) do
7: di = di + |fm(i+1)−fm(i−1)|

fmax
m −fmin

m

8: end for
9: end for

Next, the solutions with highest crowding distance value survive in the population,
and the main loop run until NSGA-II meet the stop criterium.
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4 Experimental Results

4.1 Instances of the Problem
The problems presented in the benchmark dataset are detailed in table 4.

Dataset Pessoas Grupos Departamentos
1 10 3 4
2 15 3 3
3 20 2 4
4 21 3 3
5 50 4 4
6 100 5 4
7 200 6 5

Table 4 – Benchmark Datasets (ESGARIO; SILVA; KROHLING, 2019)

Esgario, Silva e Krohling (2019) provided the sociometric and the requirement
matrices for the given problems. So, to estimate disagreement among members the eva-
luations should be generated. Four evaluations for each individual were generated under
Uniform Distribuition, ranging from 0 to 8, and the values were adopted in nominal scale
to compute disagreement.

4.2 Ilustrative Example
To illustrate the approach, is presented the fitness calculation for a solution of the

first instance of the proposed problems in the Benchmark Dataset. The sociometric matrix,
S1, of the problem with 10 Individuals given by:
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S1 =

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10



I1 0 1 0 0 1 -1 1 1 1 -1
I2 0 0 0 0 1 1 1 0 -1 1
I3 1 1 0 1 -1 1 1 -1 1 1
I4 1 1 1 0 0 1 1 1 1 1
I5 0 0 -1 -1 0 1 1 0 0 0
I6 0 1 1 0 0 0 1 -1 0 1
I7 1 1 0 0 0 0 0 1 1 0
I8 0 0 1 0 0 0 0 0 1 1
I9 1 0 0 0 0 0 0 0 0 0
I10 0 1 -1 0 0 1 1 0 -1 0

The proposed calculation of disagreement consists in computing the opinion of
the members about recorded meetings, where 4 questions were made and evaluations
are in nominal scale. The answers were simulated under Uniform distribution, values
ranging from 0 to 8. This method of evaluation is an example, but Krippendorff’s alpha
is an indicator that can be used with almost every kind of evaluation, by computing the
difference of personality, values, and opinions, with the possibility to combine evaluations.

The reliability matrix, C1, for the problem is described by:

C1 =

Ev1 Ev2 Ev3 Ev4



I1 3 6 3 4
I2 0 7 5 5
I3 3 4 1 0
I4 7 1 6 5
I5 1 6 0 7
I6 6 0 5 4
I7 2 4 0 4
I8 1 6 4 6
I9 6 6 0 6
I10 2 4 7 6
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The Requirement matrix R1 is described by:

R1 =

G1 G2 G3


D1 2 2 0
D2 2 1 0
D3 0 1 1
D4 0 0 1

So, a possible solution A1 for the problem is given by:

A1 =

G1 G2 G3



I1 0 1 0
I2 0 1 0
I3 1 0 0
I4 1 0 0
I5 1 0 0
I6 1 0 0
I7 0 1 0
I8 0 1 0
I9 0 0 1
I10 0 0 1

The Matrix notation is used to calculate the fitness of a possible solution, however,
the chromosome of GA must be converted to the following vector notation:

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10( )
A1 = 2 2 1 1 1 1 2 2 3 3

where the value stored on column Ii indicates the number of the group of element i.

4.2.1 Cohesion Measure

General cohesion for A1 is calculated according to the procedure explained in
section 2.2, and the result was 0.8. For GA, the fitness of a solution regarding cohesion is
calculated by -1*Eg, in order to use both objective as minimization problems.
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S1 =

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10



I1 0 1 0 0 1 -1 1 1 1 -1
I2 0 0 0 0 1 1 1 0 -1 1
I3 1 1 0 1 -1 1 1 -1 1 1
I4 1 1 1 0 0 1 1 1 1 1
I5 0 0 -1 -1 0 1 1 0 0 0
I6 0 1 1 0 0 0 1 -1 0 1
I7 1 1 0 0 0 0 0 1 1 0
I8 0 0 1 0 0 0 0 0 1 1
I9 1 0 0 0 0 0 0 0 0 0
I10 0 1 -1 0 0 1 1 0 -1 0

Each group’s sociometric matrix was selected, according to the procedure of the
sum of all values divided by the numbers of individuals of the group, and multiplied by a
weight, that is the division of nik per ni. So, the value for cohesion is obtained for each
group, in turn, the general cohesion, Eg, is the sum of all groups cohesion.

Sg1 =

I3 I4 I5 I6


I3 0 1 -1 1
I4 1 0 0 1
I5 -1 -1 0 1
I6 1 0 0 0

= E1*W1 = 0.2

Sg2 =

I1 I2 I7 I8


I1 0 1 1 1
I2 0 0 1 0
I7 1 1 0 1
I8 0 0 0 0

= E2*W2 = 0.7

Sg3 =

I9 I10( )
I9 0 0
I10 -1 0

= E3*W3 = -0.1

So, the value of general cohesion Eg = 0.8 for the solution A1.
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4.2.2 Disagreement Measure

The disagreement is calculated by means of the metric α for each group.

• CG1 =

Ev1 Ev2 Ev3 Ev4


I3 3 4 1 0
I4 7 1 6 5
I5 1 6 0 7
I6 6 0 5 4

=⇒ α = −0.11

• CG2 =

Ev1 Ev2 Ev3 Ev4


I1 3 6 3 4
I2 0 7 5 5
I7 2 4 0 4
I8 1 6 4 6

=⇒ α = -0.018

• CG3 =

Ev1 Ev2 Ev3 Ev4( )
I9 6 6 0 6
I10 2 4 7 6

=⇒ α = 0.045

The value α for A1 is the sum of all groups α. In this case, the value is -0.083.
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4.2.3 Constraint Violation

In order to compute the degree of constraint violation, a real allocation matrix
must be created, indicating the numbers of members from a given department belonging
to a given group. For example, the real allocation matrix of the problem, Ra is described
by:

Ra =

G1 G2 G3


D1 2 2 0
D2 2 1 0
D3 0 1 1
D4 0 0 1

The degree of violation can be computed by means of the absolute value of the
difference between R1 and Ra. In this case, Ra is equal to R1, which means that A1 is a
feasible solution.

4.2.4 Results interpretation

For α measure for disagreement, lower values indicates higher disagreement, the
opposite for cohesion, where higher values indicates higher cohesion. So, values for cohesion
in GA and NSGA-II is multiplied by -1, in order to transform to a minimization problem
for both objectives because of the algorithm implementation used. In order to analyze the
results, visualizing values in positive ranges are better to decision-makers understand the
result and make an accurate choice.Therefore, both values for cohesion and disagreement
are multiplied again by -1. So, to interpret results, the higher the value, the better is the
solution.

Next, the proposed methodology is applied, and the experimental setup will be
discussed in the following section.

4.3 Experimental Setup
To perform simulations, python (ROSSUM; JR, 1995) was used in google colab

educational environment. Pymoo, a python based framework for Single and multi-objective
optimization (Blank; Deb, 2020), was employed to run GA and NSGA-II.

An implentation of Krippendorff’s alpha calculation was imported from a github
repository. Pandas (MCKINNEY et al., 2010), Numpy (HARRIS et al., 2020) and Numba
(LAM; PITROU; SEIBERT, 2015) were other python libraries used to support the algorithm
implementation.

https://github.com/pln-fing-udelar/fast-krippendorff
https://github.com/pln-fing-udelar/fast-krippendorff
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4.3.1 Parameters Setup

For both GA and NSGA-II, some parameters are set up for the experiments:
Population size, selection operator, crossover operator and rate, mutation operator and
rate and the stop criteria.

Defining hyperparameters is an important decision when using evolutionary algo-
rithms. Good practices for defining these rates were discussed in literature (JONG, 1975)
(SCHAFFER et al., 1989), and parameters for Crossover and mutation rates have been
further explored (CZARN et al., 2004). Suggested values, typically, are in the range of 0.6
to 0.8. For mutation, typical values are not higher than 0.1. However, each problem needs
an optimal configuration (CZARN et al., 2004), and to find the most effective one, a grid
search was performed to support the decision about values for crossover and mutation
rate. For the single-objective problem, quality assessment is direct, comparing the result
of optimization. While for multi-objective, a criterium of Hypervolume(ZITZLER et al.,
2003) was introduced to represent the quality of a Pareto set, and compare the obtained
Pareto from different parameters setup.

For selection operator, Tournament is standard. Regarding, crossover and mutation
operators, simulated binary crossover and permutations were defined empirically, because
those method have outperformed other tested operators.

For population size, the value adopted by Esgario, Silva e Krohling (2019) is used
in the initial problems, since the variable space is the same and good results were obtained.
Therefore, population size equals to 50. However, for more challenging problems, this
number is increased to 80, and better results were found.

The stop criterium adopted was the number of generations. Empirical tests were
performed, and due to convergence to local minima, criteria of stopping after many
iterations without improvement was not suitable for this problem, since it was possible to
obtain improvement even after many generations stuck into local minima. So, the direct
approach of number of generations (Number of functions evaluated) was employed.

The number must depend on the instance of the Benchmark Dataset, and empirical
tests have found acceptable values, considering both efficacy and computational time. The
table 5 presents the values for both problems. For simple GA, the effort needed is lower,
because the target is to find only one solution, while for NSGA-II, a multi-dimensional
space is searched, and then, more rounds must be performed.
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Multi-Objective Single-Objective
Instance Generations Population Size Generations

1 500 50 100
2 800 50 200
3 1250 50 400
4 2500 50 800
5 3500 80 1200
6 5000 80 1600
7 10000 80 2500

Table 5 – Population and Generations setup

4.3.2 Grid Search

Possible values for crossover and mutation rates are listed in the table 6 and
7, respectively. Every possible combination of these values will be tested for NSGA-II.
Each combination is a optimization round, and a higher amount of computational effort
is required. For this reason, one instance of the Benchmark Dataset was selected to be
analyzed, and the optimal configuration for this problem will be adopted for other instances.
The selected Dataset was the 5th.

Crossover rate
20%
40%
60%
80%

Table 6 – Crossover rates to grid search

Mutation rate
1/ni%

1%
5%
10%
25%

Table 7 – Mutation rates to grid search

The configuration which presented the best value regarding Hypervolume was
crossover rate equal to 20% and mutation rate equal to 25%, in contrast with earlier
recommendations in literature (JONG, 1975), but in consonance with more recent analysis
(CZARN et al., 2004). For the single-objective problem, the same values adopted by
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(ESGARIO; SILVA; KROHLING, 2019) are used, because of the accuracy achieved in
many rounds of iterations.

The final parameters setup used in the experiments is presented in table 8:

Problem Crossover Rate Mutation Rate
Single-Objective 20% 1/ni

Multi-Objective 20% 25%

Table 8 – Final parameter setup

4.4 Single-Objective Results
The setup obtained for single-objective problems, first for cohesion maximization

and second for disagreement maximization, are detailed in the table 9. It is worth to
mention that different solutions have been found for maximizing each objective. Each
column indicates the fitness value of a solution.

Instance Best Cohesion Func. Evaluated Best Disagreement
1 1.60 25000 0.08
2 2.33 40000 0.28
3 3.5 62500 0.08
4 2.66 125000 0.22
5 3.14 280000 0.15
6 4.18 400000 0.11
7 5.56 800000 0.10

Table 9 – Single-objective results
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4.5 Multi-Objective Results
The Pareto fronts generated by NSGA-II are presented in this section. Both

objectives are in maximization direction. In the following pages, the obtained Pareto front
are presented in figures 11 to 17.

Figure 11 – Pareto Front - 1
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Figure 12 – Pareto Front - 2

Figure 13 – Pareto Front - 3
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Figure 14 – Pareto Front - 4

Figure 15 – Pareto Front - 5
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Figure 16 – Pareto Front - 6

Figure 17 – Pareto Front - 7
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NSGA-II was able to generate many and diversified solutions, being a promising
choice to tackle the problems. However, challenging problems, with more individuals, and
consequently larger search space, presents also more complexity regarding decision-making
to select a single solution from optimal set, due to the increased number of solutions in
each set.
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5 Conclusion

This study has presented a method for Human Resource Allocation considering
criteria of cohesion and disagreement. Regarding single-objective optimization, firstly, for
cohesion, results are in concordance with that previously published. In addition, it is
proposed the application of a quantitative metric, the Krippendorff’s alpha, to disagreement
measurement, because of its many possibilities of applications. A simulated reliability
matrix was generated for each problem, considering four individual evaluations, in which
the disagreement among those evaluations was computed. So, the proposed methodology
could account intra-group disagreement, and it was possible to compute the fitness of an
allocation through the metric and then optimize the allocation.

The single-objective approaches could find the optimal allocations in respect of each
objective. Though combining both objectives is a strategy to better satisfy decision-maker
needs, finding solutions that best balance both objectives, a multi-objective optimization
was performed, using NSGA-II, a standard algorithm for human resource allocation
problems. NSGA-II found a reasonable number of satisfactory and diversified solutions in
the search space, demonstrating how computational intelligence can support the decision-
making process in the problem of human resource allocation. However, in more challenging
problems, the obtained Pareto fronts also present more solutions, increasing the complexity
of the final decision. So, future works should explore post-Pareto evaluations. Moreover,
analysis of disagreement metric behavior with different evaluations and scales should be
investigated in future works.
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